

How to connect to the Aviationknowledge LSA Tools

Richard Brown

richard.uoc@gmail.com
6/4/2010 (Version 2)

For use on http://aviationknowledge.colorado.edu

Table of Contents

Table of Contents 2	
1.	 What you should already know 3	
2.	 URL Query String 3	
3.	 LSA Tools program names 4	
4.	 Web Parameter 4	
5.	 Spaces Parameter 4	
6.	 Other Parameters 5	
a.	 URL Encoding 5	

What is URL Encoding? 5	
How are characters URL encoded? 6	
Example 6	
Language Support 6	

7.	 Putting it all together – URL examples for each LSA Tool 7	
Unfamiliar headings/links analysis 7	
Confusable headings/links Analysis 8	
Goal-specific competing headings/links analysis 8	
Low Frequency Words Analysis 9	
Elaborating Links 9	
One to Many Comparison 10	
Coherence Tool 10	
Paragraph to Paragraph Coherence Tool 11	

References 12	
Appendix A: ASCII Chart 13	
Appendix B: Characters filtered by the LSA tools on aviationknowledge.colorado.edu 14	
Appendix C: Programming Examples 15	

C++ .Net 2008 15	
PERL 15	

1. What you should already know

This tutorial assumes the reader is familiar with Latent Semantic Analysis (LSA) and the
Cognitive Walkthrough as it applies to Aviation. If not, a review of the LSA papers at
http://lsa.colorado.edu/, the AutoCWW Tutorial
http://autocww2.colorado.edu/~blackmon/Tutorials/AutoCWWTutorialA.pdf, and the
papers on the Cognitive Walkthrough
http://autocww2.colorado.edu/~blackmon/Papers.html are suggested reading before
continuing.

This tutorial will walk the reader through the process of creating a valid GET Uniform
Resource Locator (URL) for use on http://aviantionknowledge.colorado.edu and give
details and examples for each LSA tool. The appendices contain an ASCII chart for easy
reference, the filtering process performed on the server, and finally examples of how to
connect to the server in various programming languages.

2. URL Query String

The method to connect to the LSA tools from your program is through a HTTP request
using the GET method using a query string. A Query string is simply the part of the URL
that contains data to be passed to the tools. A typical URL contains the server name and
path (http://server/path) such as http://aviationknowledge.colorado.edu/~pilotlsa/. A URL
with a query string contains the name of the program to run as well as the data to be
passed (http://server/path/program?query_string) such as
http://aviationknowledge.colorado.edu/cgi-
bin/termVectors.cgi?Web=1&Space=ExpertPilot_v3&Links=Navigation%20Waypoint%0D%
0ADirection

The question mark is used to separate the program name and the query string and is not
passed to the program. The query string is composed of field-data pairs separated by an
equal sign and each pair is separated by the ampersand.

Some characters cannot be part of the URL and will need to be converted. It is important
to only convert (encode) the data portion of the field-data pairs. Specifically, letters (A-Z
and a-z), numbers (0-9), period, dash, tilde, and underscore can sent without being
encoded. The space is encoded as a ʻ+ʼ or %20 and all other characters must be
encoded as %FF hex representation. It is suggested that you filter out some characters
before creating your query string. The most important character to remove is the
apostrophe as it can cause issues resulting in your program not working properly.
Appending B covers the filtering process used by the LSA tools and it is suggested you

perform similar filtering. Section 6.a covers in more detail how to perform the required
encoding on the data portion of the field-data pairs.

For our purposes, a valid URL and query string will contain the server name
aviationknowledge.colorado.edu, the path /cgi-bin/, the program name, the web
parameter, the Space parameter, and other program specific parameters. The next
sections will cover the available programs and spaces as well as the options for the web
and other parameters.

3. LSA Tools program names

Table 1 contains the program names for each of the LSA Tools. The program names are
case sensitive. Each program requires a specific set of parameters, which is covered in
section 7.

LSA Tool Program name
Unfamiliar headings/links analysis termVectors.cgi
Confusable headings/links analysis nph-matrix.cgi
Goal-specific competing headings/links analysis nph-elaborate.cgi
Frequency Analysis nph-findfrequency.cgi
Low Frequency Words Analysis nph-findParaFreq.cgi
Elaborate Links nph-elaborate1.cgi
One to Many Comparison nph-one2many.cgi
Coherence Tool nph-coherenceCheck.cgi
Paragraph to Paragraph Coherence Tool nph-PCoherenceCheck.cgi
Table 1: List of available programs

4. Web Parameter

Each of the LSA tools requires the usage of the Web parameter. This parameter takes
only two values, 0 or 1. When the Web parameter is set as 1, the script outputs the
results in HTML. The HTML output is in the same format as seen when using the LSA
tools from the http://aviationknowledge.colorado.edu/HomePage.html website. If the Web
parameter is set to 0, only the results are sent with no formatting other than a “\n”
(newline) or a “\t” (tab) to separate the results.

5. Spaces Parameter

The aviationknowledge LSA tools currently support 6 semantic spaces. The table below
contains the names of all the spaces. Please note, the names are case sensitive and
must be added to the URL as shown.

Space Description
CDUskills_v3 CDUskills corpus
CDUskills_v4 CDUskills_v3 with improved multi-word support

CDUskills_v5
CDUskils_v4 with single character letters and numbers
removed

ExpertPilot_v3 ExpertPilot corpus
ExpertPilot_v4 ExpertPilot_v3 with improved multi-word support

ExpertPilot_v5
ExpertPilot_v4 with single character letters and numbers
removed

Table 2: List of Semantic Spaces

For more information on the spaces, visit http://aviationknowledge.colorado.edu/~pilotlsa/.

6. Other Parameters

For all other parameters, the LSA tools require the links or words to be separated by a
blank line (CR/LF) and are encoded as %0D%0A. Two distinct links, Love and Hope, are
encoded as “Love%0D%0AHope”. In some cases, such as when submitting sentences or
paragraphs, two CR/LFs (%0D%0A) are needed to perform the separation. These cases
are individually identified in section 7. As noted in section 2, the data in the field-data pair
must be encoded.

a. URL Encoding

What is URL Encoding?

URL Encoding allows for the conversion of certain characters in an URL into a triplet
representation of the converted character. The triplet consists of a percent
character “%” followed by two hexadecimal digits.

The character is replaced with the triplet representation when the character is
outside the set of characters allowed to be in a URL. The character is also replaced
when the character corresponds to a reserved character used by the system to for
some other purpose.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 - _ . ~
Table 3: List of Unreserved Characters

Table 3: List of Unreserved Characters represents the list of acceptable unreserved
characters for submission in an URL While RFC 3986 [1] allows for more characters

not included in this list, some systems can modify the characters resulting in
unpredictable behavior. All characters not represented in the table will have to be
encoded.

How are characters URL encoded?

The encoding uses the two-digit hexadecimal representation of the code point of a
character set preceded by a percent character “%”. For example, the character “Š”
in the ISO 859-15 character set has a code point of 8A and is encoded as %8A.

More information on characters sets and the ISO 8859 character sets can be found
at:

The ISO 8859 Alphabet Soup -http://czyborra.com/charsets/iso8859.html

Character Set Tables –
http://www.columbiauniversity.org/kermit/csettables.html

Appendix A contains an ASCII chart with the hexadecimal value assigned to each
character and symbol.

Example

Take for instance the test string “This is a % * simple & short + test.” Notice the
string contains several characters, which must be encoded. After encoding the test
string converts to
“This%20is%20a%20%25%20*%20simple%20%26%20short%20%2B%20test.”

To test your own strings, you can use an online encoder/decoder such as
http://meyerweb.com/eric/tools/dencoder/.

Language Support

Most languages with Web support contain built-in functions to encode and decode a
String. Below is a brief list of the languages and their supported functions.

Language Encoding Decoding
.Net HttpUtility.UrlEncode

http://msdn.microsoft.com/en-
us/library/system.web.httputilit
y.urlencode%28VS.71%29.as

px

HttpUtility.UrlDecode
http://msdn.microsoft.com/

en-
us/library/system.web.http
utility.urldecode%28VS.71

%29.aspx

JavaScript escape(String)
http://www.w3schools.com/jsre

f/jsref_escape.asp

unescape(String)
http://www.w3schools.com
/jsref/jsref_unescape.asp

Perl uri_escape

http://search.cpan.org/~mrjc/cv
swebedit-v2.0b1/cvs-

web/lib/URI/Escape.pm

uri_unescape
http://search.cpan.org/~mr
jc/cvswebedit-v2.0b1/cvs-
web/lib/URI/Escape.pm

PHP urlencode(String)

http://php.net/manual/en/functi
on.urlencode.php

urldecode(String)
http://php.net/manual/en/f

unction.urlencode.php

7. Putting it all together – URL examples for each LSA Tool

From the previous section, a valid URL with a query string contains the server name, path,
program name, web parameter, space parameter, and other parameters in the format
below.
http://servername/path/program_name?Web_paramter&Space_parameter&other_paramet
ers. All parameters are in the field-data pair format separated by an ampersand. Each of
the LSA programs requires a specific set of parameters and are listed below.

Unfamiliar headings/links analysis

Script: termVectors.cgi

Parameters:

Space – A valid space name from section 5
Web – 0 (no HTML output) or 1 (HTML output)
Links – separated by %0D%0A

Example:

http://aviationknowledge.colorado.edu/cgi-
bin/termVectors.cgi?Web=1&Space=ExpertPilot_v3&Links=Navigation%20Waypoint
%0D%0ADirection

Frequency Analysis

Script: nph-findfrequency.cgi

Parameters:

Space – A valid space name from section 5
Web – 0 (no HTML output) or 1 (HTML output)
Words – separated by %0D%0A

Example:

http://aviationknowledge.colorado.edu/cgi-bin/nph-
findfrequency.cgi?Web=1&Space=ExpertPilot_v3&Words=Navigation%0D%0AWayp
oint

Confusable headings/links Analysis

Script: nph-matrix.cgi

Parameters:

Space – A valid space name from section 5
Web – 0 (no HTML output) or 1 (HTML output)
Links – separated by %0D%0A%0D%0A

Example:

http://aviationknowledge.colorado.edu/cgi-bin/nph-
matrix.cgi?Web=1&Space=ExpertPilot_v3&Links=Navigation%20Waypoint%0D%0A
Direction

Goal-specific competing headings/links analysis

Script: nph-elaborate.cgi

Parameters:

Space – A valid space name from section 5
Web – 0 (no HTML output) or 1 (HTML output)

Links – separated by %0D%0A
Frequency – Typically 50
Cosine – i.e. .25
Goal

Example:

http://aviationknowledge.colorado.edu/cgi-bin/nph-
elaborate.cgi?Space=ExpertPilot_v3&Frequency=50&Cosine=.25&Goal=The+websi
te+offers+information+and+documentation+to+support+your+analysis.&Links=Docu
ments%0D%0A%0D%0AQuestions&Web=1

Low Frequency Words Analysis

Script: nph-findParaFreq.cgi

Parameters:

Space – A valid space name from section 5
Web – 0 (no HTML output) or 1 (HTML output)
FreqRange – Flags words with frequency less than or equal to set value
Para – Paragraphs separated by %0D%0A%0D%0A

Example:

http://aviationknowledge.colorado.edu/cgi-bin/nph-
findParaFreq.cgi?FreqRange=15&Space=ExpertPilot_v3&Web=1&Para=Unfortunat
ely%2C+for+the+most+part%2C+newspapers+seem+to+look+down+on+%22curati
ng%22+as+if+it%27s+some+sort+of+lesser+form+of+journalism%2C+and+this+is+
a+sticking+point+that+they%27re+going+to+need+to+get+past+if+they+want+to+un
derstand+how+people+engage+with+the+news+today.+These+days%2C+everyone
+is+a+curator+of+the+news+in+some+fashion%3A+they+share+news%2C+comme
nt+on+it%2C+post+about+it%2C+etc.%0D%0A%0D%0AI%27m+not+denying+that+
there+is+some+resentment+out+there+of+successful+people.+There+are+always+
some+people+who+are+resentful+of+others%2C+but+I+just+don%27t+see+that+a
s+a+driving+force+in+the+criticism+of+content+creators+who+choose+a+path+that
+is+anti-fan.

Elaborating Links

Script: nph-elaborate1.cgi

Parameters:

Space – A valid space name from section 5

Web – 0 (no HTML output) or 1 (HTML output)
Links – separated by %0D%0A%0D%0A
Frequency – Typically 50
Cosine – i.e. .50

Example:

http://aviationknowledge.colorado.edu/cgi-bin/nph-
elaborate1.cgi?Space=ExpertPilot_v3&Frequency=50&Cosine=.50&Links=Direction
s%0D%0A%0D%0AUnknown+Words&Web=1

One to Many Comparison

Script: nph-one2many.cgi

Parameters:

Space – A valid space name from section 5
Web – 0 (no HTML output) or 1 (HTML output)
Links – separated by %0D%0A%0D%0A

 Goal

Example:

http://aviationknowledge.colorado.edu/cgi-bin/nph-
one2many.cgi?Space=ExpertPilot_v3&Goal=I%27m+not+denying+that+there+is+so
me+resentment+out+there+of+successful+people.+There+are+always+some+peopl
e+who+are+resentful+of+others%2C+but+I+just+don%27t+see+that+as+a+driving+
force+in+the+criticism+of+content+creators+who+choose+a+path+that+is+anti-
fan.&Links=Fans%0D%0A%0D%0ALoyal%0D%0A%0D%0AMoney&Web=1

Coherence Tool

Script: nph-coherenceCheck.cgi

Parameters:

Space – A valid space name from section 5
Web – 0 (no HTML output) or 1 (HTML output)
Links – No separation required.

Example:

http://aviationknowledge.colorado.edu/cgi-bin/nph-
coherenceCheck.cgi?Space=ExpertPilot_v3&Links=I%27m+not+denying+that+there

+is+some+resentment+out+there+of+successful+people.+There+are+always+some
+people+who+are+resentful+of+others%2C+but+I+just+don%27t+see+that+as+a+d
riving+force+in+the+criticism+of+content+creators+who+choose+a+path+that+is+a
nti-fan.&Web=1

Paragraph to Paragraph Coherence Tool

Script: nph-PCoherenceCheck.cgi

Parameters:

Space – A valid space name from section 5
Web – 0 (no HTML output) or 1 (HTML output)
Links – Paragraphs separated by %0D%0A%0D%0A

Example:

http://aviationknowledge.colorado.edu/cgi-bin/nph-
PCoherenceCheck.cgi?Space=ExpertPilot_v3&Web=1&Links=I%27m+not+denying
+that+there+is+some+resentment+out+there+of+successful+people.+There+are+al
ways+some+people+who+are+resentful+of+others%2C+but+I+just+don%27t+see+t
hat+as+a+driving+force+in+the+criticism+of+content+creators+who+choose+a+pat
h+that+is+anti-
fan.+%0D%0A%0D%0AComing+at+the+same+question+from+the+other+direction
%2C+again%2C+I+have+trouble+seeing+%22resentment%22+as+the+issue+at+all
.+When+we+look+at+the+success+stories%2C+the+one+thing+that+comes+throug
h+loud+and+clear+is+that+respecting+fans+results+in+those+fans+becoming+incre
dibly+loyal.+They%27re+loyal+to+a+fault%2C+in+fact.+There%27s+no+resentment
+there+at+all.+If+anything%2C+at+times%2C+it+seems+to+border+on+hero+wors
hip.

References

[1] Berners-Lee, T. January 2005. Uniform Resource Identifier (URI): Generic Syntax.
Retrieved February 15, 2010. http://tools.ietf.org/html/rfc3986

Appendix A: ASCII Chart

From: http://msdn.microsoft.com/en-us/library/60ecse8t(v=VS.71).aspx

Appendix B: Characters filtered by the LSA tools on
aviationknowledge.colorado.edu

The user input is pre-processed through a set of filters before submitting the requests to the LSA
tools. This ensures the security of the system as well as aligns the user submitted data to the same
standards as the space. The filtering process is performed in this order:

• All characters are converted to lower case
• All commas are removed from numbers such that 40,000 is transformed into 40000
• All periods are removed and replaced by a space. Please note that numbers like “4.5” will be

transformed to “4 5” with a space between the number 4 and 5.
• All commas are removed and replaced by a space. This is performed after commas are

removed from numbers.
• All dashes ʻ-ʻ and underscores ʻ_ʼ are removed with no substitution. A word containing one of

these characters, such as “vertical_flight” or “vertical-flight” becomes “verticalflight”.
• All instances of the basic possessive apostrophe, ʼs, is replaced by a space. e.g. “catʼs” is

replaced by “cat”
• All other instances of the apostrophe is replaced by a space
• These characters are replaced by a space in the order shown:

` ! @ # $ % ^ & * + = / \ () [] { } | : ; “ < > ?

In almost all of the programs, multiple spaces are replaced by one space during the filtering process.

Appendix C: Programming Examples

Below are two snippets of code in two different program languages, which show how to
connect to the server using a valid URL.

 C++ .Net 2008
// This is a snippet of code from a small test application.

// Prepare the webpage
 HttpWebRequest request =
(HttpWebRequest)WebRequest.Create("http://aviationknowledge.colorado.edu/cgi-
bin/nph-
findfrequency.cgi?Web=1&Space=ExpertPilot_v3&Words=Navigation%0D%0AWaypoint")
;

 // execute the request
 HttpWebResponse response = (HttpWebResponse)
 request.GetResponse();

 Stream responseStream = response.GetResponseStream();

 MemoryStream memStream = new MemoryStream();
 byte[] buffer = new byte[2048];
 int bytesRead = 0;

 do
 {
 bytesRead = responseStream.Read(buffer, 0, buffer.Length);
 memStream.Write(buffer, 0, bytesRead);

 } while (bytesRead != 0);

 responseStream.Close();

 buffer = memStream.ToArray();

 string html = System.Text.Encoding.ASCII.GetString(buffer);

 // Do something with returned HTML

 PERL
#!/usr/bin/perl -w

use strict;
use LWP::Simple;
use URI::Escape;

my $site = 'http://aviationknowledge.colorado.edu/cgi-bin/';
my $script = 'nph-findfrequency.cgi';
my $web = '0'; # 0=no HTML output, 1=HTML ouput
my $space = 'ExpertPilot_v3';

#Using a set of words, create string with \r\n separating words. Encode
string for the URL
my @words= ("Navigation" ,"Waypoint");
my $unencoded_words = $words[0] . "\r\n". $words[1];
my $filtered_words = filter_symbols($unencoded_words);
my $encoded_words = uri_escape($filtered_words);

#create URL and send for processing

my $url = $site . $script . "?Web=" . $web . "&Space=" . $space . "&Words=" .
$encoded_words;
my $content = get $url; die "Couldn't get $url" unless defined $content;

#All the information returned from the website is returned in $content
print $content;

sub filter_symbols
{
 my ($orig_text) = @_;

 $orig_text =~ tr/A-Z/a-z/; # Make everything lower-case

 $orig_text =~ s/([0-9])(,)([0-9])/$1$3/; #removes comma from numbers
i.e 40,000 -> 40000
 $orig_text =~ s/\./ /g; #subs all periods with space
 $orig_text =~ s/\,/ /g; #subs all commas with space

 $orig_text =~ s/`/ /g;
 $orig_text =~ s/!/ /g;
 $orig_text =~ s/@/ /g;
 $orig_text =~ s/#/ /g;
 $orig_text =~ s/\$/ /g;
 $orig_text =~ s/%/ /g;
 $orig_text =~ s/\^/ /g;
 $orig_text =~ s/&/ /g;
 $orig_text =~ s/*/ /g;

 $orig_text =~ s/-//g;
 $orig_text =~ s/_//g;
 $orig_text =~ s/\+/ /g;
 $orig_text =~ s/=/ /g;

 $orig_text =~ s/\// /g;
 $orig_text =~ s/\\/ /g;

 $orig_text =~ s/\(/ /g;
 $orig_text =~ s/\)/ /g;
 $orig_text =~ s/\[/ /g;
 $orig_text =~ s/\]/ /g;
 $orig_text =~ s/\{/ /g;
 $orig_text =~ s/\}/ /g;
 $orig_text =~ s/\|/ /g;

 $orig_text =~ s/:/ /g;
 $orig_text =~ s/;/ /g;
 $orig_text =~ s/'s/ /g;
 $orig_text =~ s/'/ /g;
 $orig_text =~ s/"/ /g;
 $orig_text =~ s/</ /g;
 $orig_text =~ s/>/ /g;
 $orig_text =~ s/\?/ /g;

 return $orig_text;

}

